Multi-Task Classification for Incomplete Data
نویسندگان
چکیده
A non-parametric hierarchical Bayesian framework is developed for designing a sophisticated classifier based on a mixture of simple (linear) classifiers. Each simple classifier is termed a local “expert”, and the number of experts and their construction are manifested via a Dirichlet process formulation. The simple form of the “experts” allows direct handling of incomplete data. The model is further extended to allow simultaneous design of classifiers on multiple data sets, termed multi-task learning, with this also performed non-parametrically via the Dirichlet process. Fast inference is performed using variational Bayesian analysis, and example results are presented for several data sets.
منابع مشابه
Exploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملCombining Missing Data Imputation and Pattern Classification in a Multi-Layer Perceptron
Multi-Layer Perceptrons (MLPs) have been successfully applied in many pattern classification tasks. However, a drawback of these learning machines is that they cannot handle input vectors that present missing data on its features. A recommended way for dealing with missing values is imputation, i.e., to fill in missing data with plausible values. This paper presents a brief review of handling m...
متن کاملIncomplete Pattern Classification using a Multi-Task Approach
Missing data present a challenge to many pattern classification tasks. One of the most recommended ways for dealing with unknown values is missing data imputation. This paper presents an useful neural network approach that combines the classification and the missing data imputation using Multi-Task Learning. An effective cost function is also proposed that tends to provide imputed values for th...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملMulti-Task Linear Programming Discriminant Analysis for the Identification of Progressive MCI Individuals
Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008